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Abstract. We make an attempt to map a simple economically motivated model for price evolution [J. Phys.
A 33, 3637 (2000)] to the phenomenological renormalization group scaling of stock markets. This mapping
gives insight into the critical exponents and the renormalization group predictions for the log-periodic
oscillations preceding some stock market crashes from the perspective of non-linear changes in ‘the level

of stock’.

PACS. 89.90+n Other topics in aeras of applied and interdisciplinary physics — 64.60Ak Renormalization-
group, fractal, and percolation studies of phase transitions

1 Introduction

Several papers have appeared in recent years showing in-
creasing evidence that at least some market crashes are
anticipated by a power law behaviour of the stock market
index which fluctuates with oscillations that are periodic
in the logarithm of the time to crash (see, for example,
[1-6]). From these observations, it has been argued that
there is a close relation between stock market crashes
and renormalization group (RG) theory [1]. Precursory
logarithm- (log-)periodic patterns can also emerge from
percolation models by applying the cluster concept to
groups of investors acting collectively [7,8].

The RG approach has been found to model stock mar-
ket time evolution remarkably well, predicting the ex-
istence of large price crashes. However a possible uni-
versality for the real exponents quantifying the observed
behaviour in market prices, which would define a crash,
has not yet been established [2]. Unlike in the case of sys-
tems in thermodynamic equilibrium, there is no known
underlying Hamiltonian from which RG critical exponents
could be deduced. In this paper we propose a simplified
dynamics for the price evolution and make an attempt to
map this dynamics to the RG predictions. We show how
the simplest, non-linear economic model proposed by the
author [9] may be mapped onto the non-linear RG scal-
ing of stock markets in order to understand the critical
exponents in terms of relevant economic variables such as
the demand and supply of a commodity (or product). As
an illustrative example, we apply the mapping to the NY
Standard & Poor (S&P)500 index crash of October 1987.
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2 Non-linear renormalization group
generalization

In analogy with RG theory, it is assumed that the
temporal variation of the stock market index I(t) is
related to future events at ¢’ by the transformations [1,2]

= ¢(x), (1)
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where x = t. — t. ¢ is called the RG flow map and p is
a constant describing the scaling of I on the rescaling of
t in equation (1). F' = 0 at the critical point ¢, (the time
of a large crash), g(x) represents the non-singular part of
the function F'(x), which is assumed to be continuous, and
¢(x) is assumed to be differentiable.

An extension of these results to a more general RG
approach begins by considering that the solution of the
RG equation (2), in conjunction with equation (1) and

the linear approximation ¢(z) = 5\33, can be rewritten as
dF
@) _ op(a). (3)

dlogz

This defines limiting power laws as ¢t — t.. Equation (3)
is then extended to include corrections to the power law
with log-periodicity by introducing the amplitude B and
phase ¢ of F(z) = Be¥(*). The symmetry law used is
the phase shift that should keep the observable constant
under a change of units [2]. This leads us to postulate the
following Landau expansion [10]:

dF

W(gx; = (a+iw)F(z) + (n +ir)|F(z)|>F(x) + O(F®).

(4)




592

where a > 0, w, 7 and £ are real coefficients and O(F9)
represents higher order terms which will be neglected.

In terms of the amplitude and phase of F', equation (4)
yields
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where B2 = a/|n|, Aw = B2 k and (¢ is an arbitrary co-
efficient characterizing the time scale. These general forms
lead to the following solutions of the non-linear RG equa-
tion (4):

(e —7)°

L (5

I(T):A1+A2 5
)Dé

X {1 + Az cos (w log (7c — )

—l—%log <1+ (TCA_tT)Qa> )] )

where 7 =¢/¢, At = x9 and A;—; 2,3 are linear variables.

3 Non-linear economic model

Within our economic model [9], only one stock of the com-
modity is assumed and the market is considered competi-
tive, so it self-organizes to determine the behaviour of the
asset price p. We derive a dynamic price equation which
results from the prevailing market conditions in terms of
the excess demand function E(p) = D(p) —Q(p), where D
and @ are the demand and supply functions, respectively.
In our description, an asterisks (*) denotes quantities in
equilibrium. All variables are dimensionless.

In a competitive market the rate of price increase usu-
ally is a functional of E(p) such that dp/dt = f[E(p)] [11].
Considering that in general a commodity can be stored,
then stocks of the commodity build up when the flow of
output exceeds the flow of demand and wvice versa. The
rate at which ‘the level of stock’ S changes can be approx-
imated as dS/dt = Q(p) — D(p). Thus a price adjustment
relation that takes into account deviations of the stock
level S above certain optimal level S, (to meet any de-
mand reasonably quickly) is given by

d_ 95 s, - s),
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where v (i.e., the inverse of excess demand required to
move prices by one unity [12]) and X are positive factors.
For A > 0, prices increase when stock levels are low and
rise when they are high (with respect to S,). When A = 0,
the price adjusts at a rate proportional to the rate at which
stocks are either rising or falling.

For all asset prices p(t), non-linear forms for the quan-
tities D demanded and () supplied, are postulated such
that

D(p) =d" +do[1— Z—T(p—p*)Q +...1lp—p"),
Q) ="+l 1- S0 -9+ o -9, (10)

where d,, ¢, and d* = D(p*), ¢* = Q(p*) are arbitrary
coefficients (related to material costs, wage rate, etc.),
p* = p(t*) is an equilibrium price and § < 0 is an or-
der parameter as discussed in [9]. Expansion terms O(5)
are here neglected.

Considering the simplest, complete economic model as
in [11], we assume that S, depends linearly on the demand;
e.g., So =4, + €D, with £, a constant and ¢ satisfying
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M,
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where B, = ¢, — do. We have shown that only this condi-
tion can lead to solutions of the dynamic price equation in
real space [9]. Therefore, in equilibrium (where 2
and % s+ = 0, so that demand equals supply and S =
So), we obtain d* — ¢* = 0 and S* = ¢, + {(d* + dop*).

After some algebra, the second derivative of the price
adjustment equation (9) of one commodity can be approx-
imated as

pr =0
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For 6 # 0 and [A3,,%)\3,/2] > 0, it has the well-known
kink solutions

p(t) =p* + ? tanh(ﬁ (t— t*)), (13)

such that [, is positive. As in a competitive market econ-
omy the demand for a commodity falls when its price in-
creases, then it is reasonable to assume d, < 0 in equa-
tion (10). And as the price rises, the supply usually also
increases; hence in general one also assumes g, > 0. These
conditions yield 5, > 0 as required and also d,¢ > 0.

4 The mapping

We show next how a mapping can be established in order
to identify the real, phenomenological RG critical expo-
nents o and 7 in terms of our non-linear economic model
variables. From a comparison between equations (5) and



E. Canessa: Economic mapping to the renormalization group scaling of stock markets

(12) we identify the following relation between the expan-
sion terms

aB = — 606(p —p"). (14)
From this simple mapping we make an attempt to under-
stand RG modelling of stock markets and use it to analyse

and predict financial crashes in analogy to critical points
studied in physics with log-periodic correction to scaling

[2].
If for t — t* we approximate sinh(w / % (t — t*))z

v/ % (t — t*) such that
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Then using the mapping in equation (14) and the solutions
for B and p given by equations (6) and (13), respectively,
we obtain
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such that, as before v = t. — t and z, = At, and At —
vV/2/ABo. The above « is consistent with the definition of
critical exponents [10].

Using these mappings for @« — 1 and 7, it is straight-
forward to show that they also relate the second series
expansion terms between equations (5) and (12), namely:
nB3 = ‘W‘Tﬁo(p — p*)? provided that § < 0. Hence, in
terms of our non-linear economic model variables, we find
the following extended solutions in analogy with the non-
linear RG framework:
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with 7 = t, 7. = t*, Aw = 2(\3,/0)?k, and AT =

V2/\Bo.

I(t)=A1+ As

’ (17)

5 Discussion

As an example, we apply the present mapping to the
S&P500 index. In Figure 1 we show the fit of equation (17)
to the time dependence of the logarithm of the NY S&P
500 index from January 1985 to the October 1987 crash.
The parameters used in this illustrative curve (full line)
are: Ay = 5.79, A, = —0.32, A3 = 0.059, w = 6.47,
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Fig. 1. Time dependence of the logarithm of the NY S&P 500
index from January 1985 to the October 1987 crash. The full
line curve is the fit of equation (17) for a year scale of 2.29
years and the dotted lines curves the fit of equation (8) with
At = 11 years.

At = 229, Aw = 15.42 and t* = 87.70 decimal years
(with rms = 0.02). The parameter values used for the
best fit of equation (8) (dotted lines in the figure) are
those found in [2].

Similarly to the non-linear RG scaling results, we see
that the general trend of the S&P 500 data is also repro-
duced by the mapping of our economic model in the limit
t — t* so that o — 1 as deduced from equation (16). This
is to be expected due to the oscillations that are periodic
in the logarithm of the time to crash appearing in both
equations (8) and (17).

The modulation of the logarithm frequency does not
changes significatively when one approaches the critical
point t. = t*. On relatively short time scales, spikes are
not accounted for in the two equations due to complex self-
organizing phenomena in stock markets other than the one
analysed here. The log-periodic structure found prior to
crashes implies the existence of a hierarchy of time scales
[2]. The choice of the parameters A;—i 23 is empirical in
both cases.

Our mapping may give insight into the nature of mar-
ket crashes from the new perspective of the demand D
and supply @ of a commodity. Our non-linear expressions
for D and Q of equation (10) are plotted in Figure 2 and
are justified as follows: when |dp| < 1, these functions
display similar behaviour to the (commonly used) linear
p-dependence for D and (). Even more importantly, they
depict the fact that as price falls, the demand for a com-
modity can increase in agreement with one of the basic
principles of economy. On the other hand, our choice for
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Fig. 2. Non-linear forms for the demand and supply functions

of equation (10) with go > 0, do < 0, |6] = 0.8 (full lines) and
4 = 0 (dotted lines).

Q@ (with ¢, > 0) also follows the typical behaviour ob-
served in a competitive market (where no individual pro-
ducer can set his own desired price). That is, the higher
the price, the higher the profit, then the higher the supply
(see [9] for a more extensive discussion).

We have related the critical exponents o and 7 to the
relevant variables of our non-linear economic model based
on observed laws for D and @ [9]. As ¢t — t* we have iden-
tified & — 1 whereas the 7 exponent given in equation (16)
is found to depend on the order parameter ¢ < 0, relating
D and @ of a commodity as in equation (10) in conjunc-
tion with the economic model factors A and (3, under the
limiting constraints of equation (15).

Since our At coefficient also depends on A and [, these
factors drive the observed effects for ¢/t > 1, where there
is a saturation of the function I(¢), and for ¢ — t., where
the log-frequency shifts from % to 5=. In economic
terms, these features are directly related to the tempo-
ral adjustments of ‘the level of stock’ S as given in equa-
tion (9).

The concept of a certain optimal level of stock is well-
known in economic theory for stocks [11]. Planning ahead
to have suitable ‘level of stock’ is essential. If production
had to be stopped every time a company ran out of raw
materials, the time wasted would cost a fortune.

Indeed stock is held for a variety of reasons. There may
be stocks of raw materials ready for production, stocks of
work-in-progress (e.g., production parts) or stocks of fin-
ished goods. Whichever they are it is vital for a company
to control ‘the level of stock’ very carefully. Too little and
they may run into production problems, but too much
and they have tied up money unnecessarily. Low ‘level of
stock’ — say 10% — would certainly be adequate if produc-
tion levels could be maintained during the years. Usually
‘the level of stock’ needs to be adjusted as the market-
ing year progresses. Stock is considered to a current asset
because it can be converted into cash reasonably quickly.
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On the other hand, producers can also carry some stock
surplus as a way to speculate on prices.

6 Conclusions

We have shown that an economic mapping to the RG scal-
ing of stock markets reproduces reasonably well the trends
in the S&P 500 index in the vicinity of the time of crash.
As in the RG model, the mapping predicts the existence
of a crash due to corrections to the power law with log-
periodicity but such that o — 1. The main point of this
work follows that of the RG model. That is, the underlying
cause of the crash must be searched years in advance by
looking at the progressive accelerating ascent of the mar-
ket price. Our formalism differs in that we have a shorter
year scale of about At = 2.29 years compared to the fit-
ting of At = 11 years reported in [2] in which these coop-
erative phenomena are progressively being constructed. In
this period of time, one should also look for the appear-
ance of non-linearities in the behaviour of the demand and
supply functions (or, alternatively, in ‘the level of stock’)
of the commodities prior to the crash as shown here.

The author thanks the Organizers of the 2nd European Confer-
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Ligge, Belgium (July 2000), and the European Physical Society
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